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Abstract
Sarcasm is a form of language used to convey implicit information
contradicting the literal meaning of words, often observed on on-
line social media platforms. Accurately detecting satirical or ironic
expressions could significantly enhance sentiment analysis and
opinion mining. For multi-modal data, capturing both inter- and
intra-modal incongruities is crucial for this task. Recently, graph-
based approaches to modeling incongruous features bet-ween im-
age and text have made significant progress in this task. However,
these methods rely on static networks to capture incongruous fea-
tures, which makes them inflexible in adapting to diverse groups of
text and image, or neglect important information due to inadequate
use of text and image. To address these limitations, we propose a
multi-modal sarcasm detection model based on the combination of
Graph Convolutional Network and Dynamic Network. The graph
convolutional network learns the incongruity of the three modal
graphs and makes full use of the object-level information. The dy-
namic network dynamically captures the incongruity between the
global-level image and the text and can flexibly adapt to different
image and related text. At the same time, we generate augmented
text to better utilize the text information. Extensive experiments
demonstrate that our proposed method performs favorably against
state-of-the-art approaches.

CCS Concepts
• Information systems → Multimedia information systems;
Sentiment analysis; Clustering and classification; • Computing
methodologies → Information extraction.
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1 Introduction
Nowadays, internet users often employ various rhetorical strategies
to express their thoughts and emotions, such as sarcastic expres-
sions. Sarcasm is a form of language that conveys implicit informa-
tion or intent, and it has been a longstanding topic in various fields
including psychology [25], sociology [32], and neuroscience [16],
among others. The literal meaning of sarcasm is typically opposite
to its underlying true intent [41]. Accurately detecting sarcasm or
sarcastic expressions can help us better understand the emotions
and opinions people truly want to convey on social media, and
it has wide applications in many areas such as social media anal-
ysis, customer service improvement, opinion surveys, sentiment
analysis, etc.

Traditional sarcasm detection mainly studies the detection of
emotional incongruities from text content [14]. Some early stud-
ies concentrated on learning the contextual incongruity with fea-
ture engineering approaches [5, 10, 30]. In recent years, neural
network-based methods have been widely applied to textual sar-
casm detection [2, 6, 38]. There have also been recent studies using
external knowledge resources to further capture sentence incon-
gruity [24, 26]. Given the increasing presence of image and text
combined with information on social media platforms, traditional
sarcasm detection methods are no longer sufficient to meet current
needs.

Multi-modal sarcasm detection is designed to recognize the
ironic sentiment within multiple modalities [4, 31], and has at-
tracted increasing attention from researchers. Mining inter- and
intra-modal incongruities is a key strategy for multi-modal sarcasm
detection. In existing studies, some models focus on the use of
global-level image features for incongruous learning [18, 22, 28, 33].
Although great progress has beenmade, there are complex visual de-
tails in the image, and simply using the global-level image features
is too noisy, which will cause noise interference to the incongruous
capture. To address this limitation, some work extracts object-level
features as input to the model [19, 35]. While this approach has
achieved good performance, but to give up the global-level image
features is inappropriate, because it can provide background infor-
mation about the image content, supplement object-level features.
Therefore, abandoning global-level image features can result in
information loss, especially for those objects or scenes that are not
predefined in the object detection model. Inspired by this, recent
work [29] a mutual-enhanced incongruity learning network for
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(a) <user> good to see you 

keep your beans fresh ...  ew

(b) just got over the flu now i' 

m in the hospital fun

(c) thanks for the spoiler 

<user> !  i didn 't want to find 

out who won hoh on my own 

anyway .

Figure 1: Examples of Twitter data with sarcasm. (a) Incon-
gruity between the beans in the image and the text "beans
fresh". (b) The text expresses happiness in the hospital, but
the factual image contradicts this. (c) The main focus is on
textual incongruity; "thanks for the spoiler" contradicts our
common knowledge and contains sarcastic implications.

multi-modal sarcasm detection, which aims to fully exploit the
object-level and global-level image features. Unfortunately, all the
above methods adopt the architecture of static networks, which
are not flexible enough to capture different types of incongruities
for different image and related text. In real life, there are various
types of multi-modal ironic expressions. For example, the object
in the image is incongruous with a certain word or phrase in the
text, the overall description of the text is incongruous with the facts
presented by the image, and the image only serves as a supplement
while the text context is incongruous, as shown in Figure 1.

To this end, we propose a multi-modal sarcasm detection model
based on the combination of Graph Convolutional Network and
Dynamic Network (GCN-DN), which aims to make full use of text
features and image features, and also use dynamic network to solve
the problem of inflexibility caused by static network. Among them,
graph convolutional network can make full use of object-level in-
formation and better capture the inter and intra-modal semantic
relationships, while dynamic network can dynamically capture
the incongruity between the global-level image and the text and
can flexibly adapt to different image and related text. It’s worth
mentioning that to better utilize the information in the text, we
simulate human thinking patterns. By using pre-trained common-
sense reasoning tools, we supplement the implicit human emotions
and potential impacts of events in the text, combining them with
the original text content to generate augmented text. This simula-
tion of human thinking enables the method to better understand
sarcasm, thereby improving the accuracy of sarcasm detection. The
contributions of our work are summarized below.

• For the first time, we propose the use of a combination of
graph convolutional networks and dynamic networks for
the multi-modal sarcasm detection task.

• We introduce a novel external knowledge enhancementmethod
that simulates human thinking to generate augmented text,
to help multi-modal sarcasm detection.

• Experimental results on a public dataset demonstrate the ef-
fectiveness of our proposed method for multi-modal sarcasm
detection.

2 Related Work
2.1 Multi-Modal Sarcasm Detection
With the development of social media, the detection and under-
standing of sarcasm needs to consider the relationship between
multiple modes. Early studies utilize simple fusion methods of vi-
sual and textual information or methods based on decomposition
and relation network and attention mechanism for multi-modal
sarcasm detection. Schifanella et al. [31] pioneer the use of both
textual and visual information, employing a cascaded approach
for sarcasm detection. Cai et al. [3] propose a hierarchical fusion
model with image features, image attribute features and text fea-
tures to deal with multi-modal sarcasm detection. Xu et al. [40]
construct a decomposition and relation network for multi-modal
sarcasm detection. Pan et al. [27] propose inter-modality atten-
tion and co-attention to learn the contradiction of sarcasm. In the
graphics-based modeling approach, Liang et al. [18] propose to
use multi-layer interactive graph convolutional networks to fuse
features between text and image and capture multi-modal graph
representations. Liang et al. [19] explore a local semantically guided
detection approach that explicitly connects important visual areas
to text markers. Liu et al. [22] build a hierarchical congruity model
based on cross-attention mechanism and graph neural network.
Qiao et al. [29] propose a method to model multi-modal sarcasm
detection from both local semantic guidance and global perspective.
Wei et al. [35] leverage global graph-based semantic awareness
to handle this task. In addition, Wen et al. [36] propose a dual
inconsistent perception network for multi-modal sarcasm detec-
tion, consisting of semantic-enhanced distribution modeling and
Siamese Sentiment Contrastive learning modules. Although exist-
ing methods have yielded encouraging results, both image and text
features are not fully utilized, and the use of static networks limits
the flexibility of models.

2.2 Graph Neural Networks
Graph neural network (GNN) is a deep learning model specifically
designed to process graph data. It can learn the representation of
nodes and edges in the graph and perform prediction and infer-
ence of various tasks on this basis. Classical GNN models include
Graph Convolution Network (GCN) [15] and Graph Attention Net-
work (GAT) [34]. In recent years, these models have been widely
used in the field of multi-modal learning and have achieved good
performance in many studies. Such as multi-modal facial expres-
sion recognition [39], multi-modal recommendation system [17],
multi-modal emotion recognition [43], multi-modal medical image
classification [21] and multi-modal sarcasm detection [35].

2.3 Multi-Modal Dynamic Networks
Compared with static networks with fixed calculation graphs and
parameters in the inference stage, dynamic networks can adapt
their structures or parameters to different inputs, which has sig-
nificant advantages in accuracy, computational efficiency, and flex-
ibility. Multi-modal dynamic networks also demonstrate strong
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Figure 2: Overall architecture of our proposed GCN-DN for multi-modal sarcasm detection.

performance in multi-modal tasks, such as multi-modal emotion
analysis [11, 42], multi-modal Entity Linking [37], and multi-modal
3D target detection [20]. While previous studies have primarily fo-
cused on the applications of dynamic networks in social networks,
sentiment analysis, and traffic networks, few have explored their
potential for multi-modal sarcasm detection tasks.

3 Methodology
This section provides a detailed introduction to our proposed GCN-
DN, as shown in Figure 2, which consists of four parts: multi-modal
feature encoding, local graph convolutional network, global dy-
namic network, and classification. We use COMET to generate
augmented text and use RoBERTa [23] to encode the text, while us-
ing Faster-RCNN [1] and pre-trained Vision Transformer (ViT) [7]
to obtain global-level image features and image object-level features.
In the local graph convolutional network, we take the extracted text
features and object-level features as inputs to construct text-modal
graph, image-modal graph, and cross-modal graph, each of which
uses the GCN to learn the internal semantic relationship and incon-
gruity. In the global dynamic network, we input the extracted text
features and global-level image features into the dynamic network,
dynamically learn the interaction relationship between text and
image, thereby obtaining a more accurate and rich global incon-
gruity representation. Finally, the results obtained from the local
graph convolutional network and the global dynamic network are
fed into the classifier for final multi-modal sarcasm detection.

3.1 Multi-Modal Feature Encoding
Our work mainly studies multi-modal sarcasm detection with text
and image input, that is, for a given 𝑁 training samples 𝐷 ={
𝑠1, 𝑠2, . . . , 𝑠𝑁

}
, each sample 𝑠𝑖 has two inputs: Text𝑖 and Image𝑖 .

3.1.1 Text Encoding. COMET [12] is a pre-trained commonsense
inference tool that infers various commonsense relationships as-
sociated with relevant events of a given text. Through referring to
the prior psychological, cognitive, and linguistic literature [8, 9, 13],
clearly, sarcasm is always associatedwith the impact of social events
and human emotions [26]. Humans quickly determine sarcasm be-
cause our brains possess background knowledge and common sense
about sarcastic scenarios, allowing us to directly comprehend the
entire sarcastic text and thereby capture the true emotions hidden
in the given text. Therefore, to fully utilize the latent information
of the text in the multi-modal samples, for the original text Text𝑖 =
{𝑤𝑖1,𝑤

𝑖
2, . . . ,𝑤

𝑖
𝑀
}, where 𝑤𝑖

𝑗
represents the 𝑗-th token in the text

and 𝑀 is the total number of tokens, we input it into COMET,
simulate human thinking, and obtain two sequences of implicit
social event impacts and human emotions, represented as effect𝑖 =
{𝑤̃𝑖1, 𝑤̃

𝑖
2, . . . , 𝑤̃

𝑖

𝑀̃
} and react𝑖 = {𝑤𝑖1,𝑤

𝑖
2, . . . ,𝑤

𝑖

𝑀
}. The original text

Text𝑖 and the two obtained sequences are concatenated to obtain
the augmented text, denoted as A_Text𝑖 = Text𝑖 ⊕ effect𝑖 ⊕ react𝑖 ,
where ⊕ denotes the concatenation operator. We encode the re-
sulting augmented text into RoBERTa to obtain the text feature
T.

T = [𝑡1, 𝑡2, . . . , 𝑡𝑚] = RoBERTa(𝐴Text), (1)
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where 𝑡𝑖 ∈ R𝑑𝑡 represents the hidden state vector of the 𝑖-th token
in the text, 𝑑𝑡 is the dimension of the hidden representation, and
𝑚 = 𝑀 + 𝑀̃ + 𝑀̄ is the total number of tokens in the augmented
text.

3.1.2 Image Encoding. To achieve more comprehensive visual in-
formation, we extract both object-level and global-level visual fea-
tures.

For object-level feature extraction, we rely on Faster R-CNN to
detect objects and extract their features. To ensure the quality of
extracted object-level features, we select only the top 𝑘 objects with
the highest confidence score for feature extraction. Each object
obtains a visual feature v𝑖 ∈ R𝑑𝑣 , a positional feature p𝑖 ∈ R𝑑𝑝 , an
object class 𝑐𝑖 and an object attribute 𝑎𝑖 . 𝑖 ∈ [1, 𝑘] represents the
𝑖-th object, 𝑑𝑣 and 𝑑𝑝 denote the dimension of visual and positional
features, respectively. The visual feature v𝑖 and positional feature p𝑖
are fused through a linear projection to obtain a richer visual feature,
denoted as f𝑖 = W𝑣v𝑖 +W𝑝p𝑖 + b𝑓 , whereW𝑣 ∈ R𝑑𝑓 ×𝑑𝑣 andW𝑝 ∈
R𝑑𝑓 ×𝑑𝑝 are learnable weight matrices, and b𝑓 ∈ R𝑑𝑓 is a bias term.
Based on Eq. (1), we utilize RoBERTa to transform the object class
𝑐𝑖 and object attribute 𝑎𝑖 into their vector representations c̃𝑖 and
ã𝑖 , respectively. Combining f𝑖 , c̃𝑖 and ã𝑖 together yields the feature
representation of the 𝑖-th object. The object-level representation of
the entire image is represented by a matrix V𝑜 ∈ R3𝑘×𝑑𝑓 as follows,

V𝑜 = [[f1, c̃1, ã1]⊤ , [f2, c̃2, ã2]⊤ , . . . , [f𝑘 , c̃𝑘 , ã𝑘 ]⊤], (2)

Where each row corresponds to the feature representation of an ob-
ject in the image, and the feature of the 𝑖-th object can be expressed
as I𝑖 = [f𝑖 , c̃𝑖 , ã𝑖 ]⊤.

To obtain global-level image features, firstly, we resize the Image𝑖

∈ R𝑙×𝑤 and divide it into 𝑟 flat patches, such that the entire image
can be represented as a sequence containing 𝑟 patches. Next, this
sequence is sent to ViT as input for processing, and the global-level
image features V is obtained, expressed as,

V = [𝑣1, 𝑣2, . . . , 𝑣𝑟 ] = ViT(Image), (3)

where v𝑖 ∈ R𝑑𝑣 is the image embedding of the 𝑖-th patch in the
image and 𝑑𝑣 is the dimension of the image embedding.

3.2 Local Graph Convolutional Network (LGCN)
Compared to single-modal data, multi-modal data offers richer se-
mantic relationships. Ironic expressions can appear solely in either
text or image, or from contrasting descriptions across multiple
modalities. To capture these inter- and intra-modal incongruities,
we construct text, image, and cross-modal graphs, using GCN to
better learn and identify ironic expressions.

3.2.1 Text-modal graph. To extract ironic expressions from the
textual perspective and capture semantic associations between
words in sentences, we construct a text modal graph G𝑡 . In this
graph, each token corresponds to a node, represented as v𝑡

𝑖
, where

𝑖 ∈ [1,𝑚] denotes the 𝑖-th token in the augmented text. The node
features are initialized using the t𝑖 obtained from Eq. (1). The edges
of graph are defined by the dependency tree1, an efficient method
as demonstrated in previous studies [18]. Concretely, based on the
parent node of each token in the dependency tree, we connect the
1https://spacy.io/.

corresponding nodes in the text-modal graph to represent token
dependencies. The text-modal adjacency matrix A𝑡 ∈ R𝑚×𝑚 is
constructed as follows,

A𝑡𝑖, 𝑗 =

{
1, if 𝐷 (t𝑖 , t𝑗 ) = 1, 𝑖, 𝑗 ∈ [1,𝑚]
0, otherwise,

(4)

where 𝐷 (t𝑖 , t𝑗 ) indicates that token t𝑖 and token t𝑗 have a certain
dependency relationship in the dependency tree, the corresponding
nodes v𝑡

𝑖
and v𝑡

𝑗
are connected. To enrich the dependency informa-

tion of the text, we construct the graph as an undirected graph (i.e.,
A𝑡
𝑖, 𝑗

= A𝑡
𝑗,𝑖
) and set a self-loop for each token (i.e., A𝑡

𝑖,𝑖
= 1).

3.2.2 Image-modal graph. There are also some visual features in
ironic expressions that are separate from text. To capture the visual
semantic association between different objects in the image, we
construct an image-modal graphG𝑣 . In the graph, there are a total of
𝑘 objects, eachwith three nodes represented as v𝑣

𝑖
, where 𝑖 ∈ [1, 3𝑘],

corresponding to the three feature vectors of the object: richer
visual features, object class, and object attributes. The node set
can be initialized as {f1, c̃1, ã1, . . . , f𝑘 , c̃𝑘 , ã𝑘 }, where the object class
serves as the representative node connecting the objects. As the
three nodes of each object essentially describe the same object from
different aspects, we fully connect them. The construction of edges
between objects is based on the Intersection over Union (IoU) scores
between objects to reflect their spatial relationship and semantic
correlation. The image-modal adjacency matrix A𝑣 ∈ R3𝑘×3𝑘 is
constructed as follows,

A𝑣𝑖, 𝑗 =


1, if 𝑖 mod 3 = 𝑗 mod 3, 𝑖, 𝑗 ∈ [1, 3𝑘]
𝑆𝑖, 𝑗 , if 𝑖 mod 3 = 1, 𝑗 mod 3 = 1, 𝑖, 𝑗 ∈ [1, 3𝑘]
0, otherwise,

(5)

where𝑚𝑜𝑑 denotes the modulo operation, which links the three
nodes corresponding to the same object. 𝑟𝑒𝑚 denotes the remainder
operation, used for linking different objects. 𝑆𝑖, 𝑗 is the IoU score,
serving as the weight of the edges between different objects.

3.2.3 Cross-modal graph. Many times, irony is expressed by com-
bining image and text. To integrate the semantic relationship be-
tween image and text for a more comprehensive sarcasm detection,
we construct a cross-modal graphG𝑐 . Its nodes cover all text tokens
and object-level image features, denoted as 𝑣𝑐

𝑖
, where 𝑖 ∈ [1,𝑚+3𝑘].

The node set is initialized as {𝑡1, 𝑡2, . . . , 𝑡𝑚, 𝑓1, 𝑐1, 𝑎1, . . . , 𝑓𝑘 , 𝑐𝑘 , 𝑎𝑘 }.
To construct edges in the cross-modal graph, the process involves
two steps: 1) We use the association information in knowledge
graphConceptNet52 to judgewhether there is a correlation between
text and image. If there is a correlation, the nodes are connected;
2) We integrate the existing edges in the text-modal graph and the
image-modal graph to enrich the information in the cross-modal
graph. This means that if edges representing semantic relationships
between words or objects already exist in text-modal graph and
image-modal graph, those edgeswill also be included in cross-modal
graph. The cross-modal adjacency matrix A𝑐 ∈ R(𝑚+3𝑘 )×(𝑚+3𝑘 ) is

2https://github.com/commonsense/conceptnet5.
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constructed as follows,

A𝑐𝑖, 𝑗 =


A𝑡
𝑖, 𝑗
, if A𝑡

𝑖, 𝑗
> 0, 𝑖, 𝑗 ∈ [1,𝑚]

A𝑣
𝑖, 𝑗
, if A𝑣

𝑖, 𝑗
> 0, 𝑖, 𝑗 ∈ [𝑚 + 1,𝑚 + 3𝑘]

1, if 𝐾 (𝑡𝑖 , 𝐼 𝑗 ), 𝑖 ∈ [1,𝑚], 𝑗 ∈ [𝑚 + 1,𝑚 + 𝑘]
0, otherwise,

(6)

where, 𝐾 (𝑡𝑖 , 𝐼 𝑗 ) denotes that there exists a certain relationship be-
tween the token 𝑡𝑖 and objects 𝐼 𝑗 in ConceptNet5.

3.2.4 Graph Convolutional Network. We employ a multi-layer col-
laborative GCNs architecture to learn inter- and intra-modal incon-
gruous expressions. For each collaborative GCNs layer, we construct
text-modal layer, image-modal layer, and cross-modal layer, facili-
tating collaborative learning across the three modal graphs. These
modal graphs are employed to adjust and refine the graphical repre-
sentations in multi-modal sarcasm detection. The specific process
is defined as follows,

G𝑡
𝑙
= ReLU(Ã𝑡G𝑐

𝑙−1W
𝑡
𝑙
+ b𝑡

𝑙
)

G𝑣
𝑙
= ReLU(Ã𝑣G𝑡

𝑙
W𝑣
𝑙
+ b𝑣

𝑙
)

G𝑐
𝑙
= ReLU(Ã𝑐G𝑣

𝑙
W𝑐
𝑙
+ b𝑐

𝑙
),

(7)

where𝐺𝑥
𝑙
are the representations of nodes in corresponding graphs

after the 𝑙-th collaborative GCNs process.W𝑥
𝑙
∈ R𝑑ℎ×𝑑ℎ and b𝑥

𝑙
∈

R𝑑ℎ are the trainable parameters of the 𝑙-th collaborative GCNs
layer, where 𝑥 ∈ {𝑡, 𝑣, 𝑐} and 𝑙 ∈ [1, 𝐿]. Ã𝑥 = (D𝑥 )−

1
2 A𝑥 (D𝑥 )−

1
2 is

the normalized symmetric adjacencymatrix, whereD𝑥 is the degree
matrix of A𝑥 . The original input nodes of the first interactive GCNs
layer are the combination of text representation and object-level im-
age representation, i.e. G𝑐1 = {𝑡1, 𝑡2, . . . , 𝑡𝑚, 𝑓1, 𝑐1, 𝑎1, . . . , 𝑓𝑘 , 𝑐𝑘 , 𝑎𝑘 }.

Subsequently, inspired by [18, 19], we employ a retrieval-based
attention mechanism to capture attention features from both text
and image. We input the initial node representations of cross-modal
graph (i.e., H = {v𝑐1, v

𝑐
2, . . . , v

𝑐
𝑚+3𝑘 }) and the final outputs of the

collaborative GCNs layers (i.e., G𝑐
𝐿
= {g1, g2, . . . , g𝑚+3𝑘 }) into at-

tention mechanism. For each node v𝑗 , we calculate its attention
scores with respect to other nodes, which are then used to assess the
importance of nodes in the graph. Using these attention scores, we
perform a weighted summation of node representations to obtain
the final sarcasm representation of LGCN for sarcasm detection, as
follows,

𝑓𝐺 =

𝑚+3𝑘∑︁
𝑖=1

𝛼𝑖ℎ𝑖 , (8)

where 𝛼𝑖 = softmax
(∑𝑚+3𝑘

𝑗=1 v𝑇
𝑗
g𝑗

)
refers to attention scores, h𝑖

denotes the representation of the initial node v𝑗 in the cross-modal
graph. Then we feed f𝐺 into fully connected layers to gain the
predicted probability distributions as follows,

p𝐺 = softmax(W𝐺 f𝐺 + b𝐺 ), (9)

where p𝐺 ∈ R2 represents the predicted probability vector of LGCN,
W𝐺 ∈ R𝑑×2, b𝐺 ∈ R2 are trainable parameters. Ultimately, we
calculate the cross-entropy loss to measure the difference between
the predicted probability vector and the ground truth as follows,

𝐿𝐺ce = 𝑦𝑖 log𝑝𝑖𝐺 + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖𝐺 ) + 𝜆𝐺 ∥Θ𝐺 ∥
2, (10)

where 𝑦𝑖 is the 𝑖-th element of the ground truth y. Θ𝐺 denotes all
trainable parameters in the LGCN module, and 𝜆𝐺 represents the
weight coefficients of the Frobenius norm.

3.3 Global Dynamic Network (GDN)
For multi-modal sarcasm detection, capturing cross-modal incon-
gruity is crucial. Previous methods relied on static network archi-
tectures, which lack flexibility. Moreover, object-level features and
global-level image features have been demonstrated as the opti-
mal choices for fully leveraging image information. Nevertheless,
prior research predominantly concentrated on utilizing either one
of them exclusively. Therefore, we employ a dynamic network to
address this limitation. In the previous LGCN section, we utilized
object-level features. In this section, we use global-level image
features as inputs to the GDN.

The GDN is a multi-layered network structure that takes aug-
mented text and global-level image as input, and processing and
transforming these features through a series of dynamic layers.
These dynamic layers perform hierarchical co-attention between
text and image, conditioned on different inputs, thus progressively
refining and optimizing the representation of multi-modal data.
Each dynamic layer mainly consists of three modules: multi-head
co-attention routing (MHCAR) module, multi-head self-attention
(MHA) module, and feed-forward network (FFN).

3.3.1 Multi-Head Co-attention Routing. The MHCAR module in
the dynamic layer employs a parallel multi-head attention mecha-
nism to effectively capture the complex relationships between text
and image. By concurrently executing multiple attention heads and
weighting their results based on routing probability weights, the
MHCAR module achieves fine-grained attention and integration
across different components.

Specifically, first, the output of the previous dynamic layer D𝑙−1
and the global-level image features V are separately subjected to
linear transformations to derive the query Q𝑖, 𝑗,𝑙 , key K𝑖, 𝑗,𝑙 , and
value V𝑖, 𝑗,𝑙 for the 𝑖-th attention head, as follows,

Q𝑖, 𝑗,𝑙 = D𝑙−1W
Q
𝑖, 𝑗,𝑙

K𝑖, 𝑗,𝑙 = VWK
𝑖, 𝑗,𝑙

V𝑙𝑖, 𝑗 = VWV
𝑖, 𝑗,𝑙

,

(11)

where W𝑄

𝑖,𝑗,𝑙
∈ R𝑑𝑡×𝑑ℎ , W𝐾

𝑖,𝑗,𝑙
∈ R𝑑𝑣×𝑑ℎ and W𝑉

𝑖,𝑗,𝑙
∈ R𝑑𝑣×𝑑ℎ are

parameter matrices. Specifically, the initial input D0 is the textual
input T obtained from Eq. (1). Next, we compute the attention
weights and attention distribution between text and image, and
then obtain the representation of the 𝑖-th attention head head𝑙𝑖 , in
the 𝑙-th dynamic layer. The calculation is as follows,

head𝑙𝑖 =
𝑝𝑙−1∑︁
𝑗=0

𝛼𝑙𝑗 CA
𝑙
𝑖, 𝑗 (Q𝑖, 𝑗,𝑙 ,K𝑖, 𝑗,𝑙 ,V

𝑙
𝑖, 𝑗 ,A

𝑗 )

CA𝑙𝑖, 𝑗 = softmax

(
Q𝑖, 𝑗,𝑙K⊤

𝑖, 𝑗,𝑙√︁
𝑑ℎ

⊗ A𝑗
)
V𝑙𝑖 ,

(12)

where CA𝑙
𝑖, 𝑗

is the co-attention function used to compute the atten-
tion distribution between the text and image, indicating the degree
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of attention between the two modalities, and 𝑝𝑙 represents the num-
ber of co-attention functions in the 𝑙-th layer. Q⊤

𝑖,𝑙
K𝑖,𝑙 ∈ R𝑚×𝑟 rep-

resent the attention matrices between the two modalities, and ⊗ de-
notes element-wise matrix product. A𝑗 = [v𝑠1, v

𝑠
1, . . . , v

𝑠
1] ∈ R𝑚×𝑟

denotes the co-attentionmaskmatrix, composed of masking vectors
v𝑠
𝑙
∈ R𝑟 (where, 𝑙 ∈ [1, 𝑟 ]) generated by applying a sliding window

method of size (2𝑠 + 1) × (2𝑠 + 1) to restrict the region the text can
see. We gradually increase the capture of incongruities between the
text and image by constructing different co-attention mask matrices
as the dynamic layers increase. 𝛼𝑙

𝑗
is the routing probability weight,

determining the influence of the 𝑗-th co-attention function in the
entire attention mechanism. The process is defined by following
transformation,

𝜶 𝑙𝑗 = gumbel softmax (MLP (APool(I))) ∈ R𝑝𝑙 , (13)

where APool is an adaptive average pooling operation and MLP
is a two-layer multilayer perceptron with hidden dimension 𝑑𝑟 .
Finally, based on the head𝑙𝑖 obtained from Eq. (12), the final output
of MHCAR can be calculated as follows,

MHCAR𝑙 (D𝑙−1,V) = concatℎ𝑖=1

(
head𝑙𝑖 ,O

𝑙
𝑇

)
, (14)

where concatℎ
𝑖=1 denotes the concatenation operation performed

on the outputs of ℎ attention heads. O𝑙
𝑇

∈ R𝑑𝑜×𝑑𝑜 serves as the
projection matrix, aiming to map the concatenated outputs of at-
tention heads head𝑙𝑖 to a new space, ensuring compatibility with
the subsequent layer. A residual connection and a normalization
layer (LN) follow the MHCAR module, resulting in the output of
the 𝑙-th dynamic layer as follows,

DMHCAR
𝑙

= LN (MHCAR𝑙 (D𝑙−1,V) + D𝑙−1) , (15)

where D𝑙−1 is the output of the 𝑙 − 1 dynamic layer.

3.3.2 Multi-Head Self-Attention. To enhance the network hierar-
chy, improve feature representation capabilities, and better extract
associative information between text and image, thereby improving
the expression power and generalization ability of the model, we
introduce the MHA module.

Specifically, in the 𝑙-th dynamic layer, the MHA module takes
the output DMHCAR

𝑙
from the MHCAR module as input. It then

performs linear transformations to derive the query Q𝑖, 𝑗,𝑙 , key
K𝑖, 𝑗,𝑙 , and value V𝑙𝑖, 𝑗 for the 𝑖-th attention head, following a process
similar to that described in Eq. (11). For each head, the attention
score is calculated, and the representation of the 𝑖-th attention head
in the 𝑙-th dynamic layer is as follows,

head𝑙𝑖 = softmax

(
Q𝑖,𝑙K⊤

𝑖,𝑙√︁
𝑑ℎ

)
. (16)

The outputs of each head𝑙𝑖 are combined using an attention-
weighted sum. Following the MHA module, a residual connection
and a LN are applied. The output of the MHA module in the 𝑙-th
dynamic layer is obtained as follows,

DMHA
𝑙

= LN
(
MHA𝑙

(
DMHCAR
𝑙

)
+ DMHCAR

𝑙

)
. (17)

Table 1: Statistics of the experimental data.

Training Development Testing

Positive 8642 959 959
Negative 11174 1451 1450
Total 19816 2410 2409

3.3.3 Feed-Forward Network. he FFN module is used in the dy-
namic layer to process the output of the MHA module by perform-
ing two linear transformations, which can be formulated as follows,

FFN𝑙 (DMHA
𝑙

) = ReLu(DMHA
𝑙

W𝑙
1 + b𝑙1)W

𝑙
2 + b𝑙2, (18)

where DMHA
𝑙

is the output of MHA module in the 𝑙-th dynamic
layer,W𝑙

1 ∈ R𝑑𝑡×𝑑ℎ andW𝑙
2 ∈ R𝑑ℎ×𝑑𝑡 are the weight matrices, and

b𝑙1 ∈ R𝑑ℎ and b𝑙2 ∈ R𝑑𝑡 are bias terms. After the FFN module, a
residual connection and a LN are applied. The output of the FFN
module in the 𝑙-th dynamic layer also serves as the final output of
the 𝑙-th dynamic layer, as follows,

D𝑙 = DFFN
𝑙

= LN
(
FFN𝑙

(
DMHA
𝑙

)
+ DMHA

𝑙

)
. (19)

Each dynamic layer completes one iteration after processing
through the MHCAR, MHA and FFN modules. Upon completing 𝐿
iterations, the final representation f𝐷 (where f𝐷 = D𝐿) for sarcasm
detection is obtained. Similar to the LGCN, a fully connected layer is
employed to derive the prediction probability distribution p𝐷 ∈ R2.
The cross-entropy loss function 𝐿𝐷ce for the GDN is then defined,
having a form analogous to Eq. (12) (13).

3.4 Classification
To fuse the prediction results of the models, we employ a weighted
average of the prediction outputs from the LGCN and the GDN.
This approach allows us to comprehensively consider the predictive
capabilities of both models, thereby achieving improved prediction
performance through judicious allocation of weights. The final
prediction result Ŷ and the loss function 𝐿𝑓 are defined as follows,

Ŷ = argmax (𝛼 × p𝐺 + (1 − 𝛼) × p𝐷 ) , (20)

𝐿𝑓 = 𝛽 × 𝐿𝐺ce + (1 − 𝛽) × 𝐿𝐷ce, (21)
where, 𝛼 and 𝛽 are weights controlling the predictions and loss
functions of the LGCN and the GDN, respectively. p𝐺 and p𝐷 rep-
resent the prediction probability distributions of the LGCN and
the GDN, while 𝐿𝐺ce and 𝐿𝐷ce denote the cross-entropy losses of the
LGCN and the GDN, respectively.

4 Experiments
4.1 Datasets
We evaluate our approach on the publicly available multimodal
sarcasm detection benchmark dataset [3]. Each example in this
dataset comprises a text component and a corresponding image.
Samples labeled with hashtags such as "#sarcasm” are categorized
positive examples, while those without such labels are deemed
negative examples. The dataset is divided into a training set, a
development set, and a testing set with a ratio of 80%:10%:10%. The
statistics of the dataset are shown in Table 1.
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Table 2: Performance comparison among different methods on the multi-modal sarcasm dataset in terms of Acc, F1-score, and
Macro-average F1-score. The best results are represented in bold. The second-best results are underlined.

Modality Method Acc (%) Pre (%) Rec (%) F1 (%) Macro-average

Pre (%) Rec (%) F1 (%)

single-model ResNet 64.76 54.41 70.80 61.53 60.12 73.08 65.97
ViT 73.72 65.56 71.64 68.46 72.78 73.37 72.97

Bi-LSTM 81.90 76.66 78.42 77.53 80.97 80.13 80.55
BERT 83.85 78.72 82.27 80.22 81.31 80.87 81.09

RoBERTa 85.51 78.24 88.11 82.88 84.83 85.95 85.16

multi-model HFM 83.44 76.57 84.15 80.18 79.40 82.45 80.90
Res-BERT 84.80 77.80 84.15 80.85 78.87 84.46 81.57
Att-BERT 86.05 78.63 83.31 80.90 80.87 85.08 82.92

InCrossMGs 86.10 81.38 84.36 82.84 85.39 85.80 85.60
HKEmodel 87.36 81.84 86.48 84.09 - - -
CMGCN 87.55 83.63 84.69 84.16 87.02 86.97 87.00
MILNet 89.50 85.16 89.16 87.11 88.88 89.44 89.12
DIP 89.59 87.76 86.58 87.17 88.46 89.13 89.01

G 2 SAM 90.48 87.95 89.02 88.48 89.44 89.79 89.65
DN-GCN 91.53 90.44 90.79 89.20 89.58 89.80 90.68

4.2 Experimental Settings
To ensure fairness, we follow previous works [3] for dataset prepro-
cessing. We utilized comet-atomic-20203 and roberta-base4 for aug-
mented text generation, where each word embedding is of dimen-
sionality 768. The image size is adjusted to a resolution of 224× 224,
and visual embeddings are generated using vit_base_patch32_2245.
We employ bottom-up-attention6 for object detection, with a maxi-
mum of 10 visual regions. In the LGCN, the number of collaborative
GCNs layers is 2, while in the GDN, there are 4 dynamic layers.
We optimized our model using Adam. In the LGCN, the learning
rate is 10−4, and the weight decay is 10−4. In the GDN, the learn-
ing rate is 10−6, and the weight decay is 0.01. We evaluate the
model performance using Accuracy, Precision, Recall, and F1 score.
Our experimental results are averaged over ten runs with different
random seeds.

4.3 Comparison Models
To validate the performance of GCN-DN, we compare it with repre-
sentative methods of existing single-modal and multi-modal base-
lines.

4.3.1 Single-Modal Baselines. Image-modality methods utilize vi-
sual information for sarcasm detection, including image embed-
dings with pooling layers using ResNet [3] and pre-trained vi-
sual model ViT [7] based on the Transformer architecture. Text-
modality methods rely on textual information for sarcasm detec-
tion, including text encoding with Bi-LSTM [29] and models based
on pre-trained Transformer architecture, such as BERT [6] and
RoBERTa [23].

3https://github.com/allenai/comet-atomic-2020.
4https://huggingface.co/roberta-base.
5https://github.com/rwightman/pytorch-image-models.
6https://github.com/peteanderson80/bottom-up-attention.

4.3.2 Multi-Modal Baselines. Multi-modal methods that combine
image and text information to detect sarcasm, we consider com-
paring them with the following methods. HFM [3] proposes a hi-
erarchical fusion model, which integrated text, image and image
attribute information. Res-BERT [27] connects image features and
BERT-based text features to detect sarcasm. Att-BERT [27] proposes
different attention strategies to detect sarcasm. InCrossMGs [18]
explores an interactive graph convolution network structure to
learn the incongruity relations of in-modal and cross-modal graphs
jointly and interactively. CMGCN [19] proposes cross-modal graphs
based on attribute-object pairs of image objects to capture sarcastic
clues. HKEmodel [22] uses image captions as external knowledge to
enhance the ability of multi-modal sarcasm detection. MILNet [29]
designs a local semantic-guided incongruity learning module and a
global incongruity learning module to mutually enhance the abil-
ity of multi-modal sarcasm detection. DIP [36] introduces a dual
inconsistency perception network consisting of two branches to ex-
plore sarcasm information from both factual and emotional aspects.
G2SAM [35] proposes a multi-modal sarcasm detection inference
paradigm based on graph-based global semantic perception.

4.4 Main Results
We compared the experimental results of different models in the
multi-modal sarcasm detection task, as shown in Table 2. From these
results, we can draw the following conclusions. 1) The base-line
model based on the text modality outperforms the baseline model
based on the image modality. This may be because higher infor-
mation density in text, which provides more explicit sarcasm cues
compared to image information. This conclusion suggests that our
proposed method of augmented text mining for more text modality
information is reasonable and effective to a certain extent. 2) It is ev-
ident that multi-modal methods outperform single-modal methods
in sarcasm detection tasks. This is because multi-modal methods
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Table 3: Experiment results of ablation study.

Model Acc (%) F1 (%) Macro-F1 (%)

LGCN-only 88.41 85.11 87.59
GDN-only 88.33 85.46 87.54

- GDN, +Standard Transformer 88.09 84.21 87.36
GDN (pl=L-1) 91.06 88.70 90.00
GDN (pl=L-2) 90.73 88.44 89.76

w/o-object-level-features 87.91 84.38 86.81
w/o-global-level-features 87.69 84.24 86.78
w/o-augmented-text 90.95 87.37 90.52

GCN-DN 91.53 89.20 90.68

can effectively leverage both text and image information, thereby
enhancing the detection sarcasm. This indicates that capturing both
inter- and intra-modal incongruities is crucial for extracting sar-
casm clues from both image and text. 3) Our model achieved the
best performance across all metrics, outperforming several graph-
based baseline models [18, 19, 29, 35]. This suggests that exploring
the framework based on graph convolutional networks and dy-
namic networks holds great potential. We conducted a significance
test between GCN-DN and the baseline model G2SAM, and the
results showed that GCN-DN significantly outperformed G2SAM
on most evaluation metrics (with p-value < 0.05). This validates the
superiority of GCN-DN over existing methods.

4.5 Ablation Study
This validates the superiority of GCN-DN over existing methods.
To analyze the impact of different components of our proposed
GCN-DN, we conduct an ablation study. 1) To explore the effect of
combining graph convolutional network and dynamic network, we
remove the LGCH and the GDN, respectively. 2) To demonstrate
the benefits of using the dynamic network, we replaced it with a
standard multi-modal transformer. 3) Further-more, we vary the
number of co-attention mask matrices in the GDN to analyze its
effectiveness. 4) To verify whether using both object-level features
and global-level features simultaneously leads to better results, we
modified the GCN-DN to exclusively utilize either object-level fea-
tures or global-level features. 5) To validate the need for augmented
text, we discarded it and only fed the original sentence from text
modality into our GCN-DN framework.

Table 3 reports the results of the ablation experiment. From the
data provided, we have the following observations. 1) Our model
surpasses using either the graph convolutional network or the
dynamic network alone, indicating that combining the graph con-
volutional network with the dynamic network can leverage their re-
spective strengths and complement the weaknesses of each, thereby
enhancing the model performance. 2) After replacing the dynamic
network with the standard multi-modal transformer, we find that
removing the dynamic ability of the model leads to performance
degradation, which reflects the advance of our proposed dynamic
network in capturing cross-modal incongruity. 3) We explored the
impact of the number of co-attention mask matrices in the GDN
on model performance. We found that increasing the number of
co-attention mask matrix types with the growth of dynamic layers

bean

tong

bean

tong

(a) <user> good to see you keep your beans fresh ...  ew

(b) just got over the flu now i' m in the hospital fun

Figure 3: Example of case study, (a) is the sample that per-
forms well in LGCN module, and (b) is the sample that per-
forms well in GDN module.

improves performance, while reducing the types of co-attention
mask matrices leads to a decline in performance. This indicates that
increasing the diversity of co-attention mask matrix types gradu-
ally enhances flexibility and generalization ability, helping to better
capture cross-modal incongruity between image and text. This fur-
ther illustrates the advantage of dynamic networks in multi-modal
sarcasm detection tasks. 4) We modified our model to use only
global-level image features, discarding object-level features in the
construction of the graph in the LGCN, similar to the approach of
the InCrossMGs model. However, we found that the model perfor-
mance degraded. Furthermore, when we changed the model to use
only object-level features, utilizing object-level features as inputs
in the GDN, a decrease in performance is observed. Experimental
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results indicate that using both object-level features and global-
level image features can enhance model performance. These two
types of image features can effectively leverage image information,
which is crucial for capturing cross-modal incongruity. 5) After
the augmented text containing the effects of events and human
emotions was removed, the model performance decreased. This
indicates that the generated augmented text, which mimics human
thought processes, mines more information from the text modality,
aiding the model in better understanding the emotions and contexts
within the text.

4.6 Case Study
This confirms the superiority of GCN-DN over existing methods.
The key to multi-modal sarcasm detection is to capture the incon-
gruous information between different modalities. Therefore, we
present attention visualizations for two test samples, representing
distinct types of sarcasm, both necessitating simultaneous consider-
ation of textual and visual cues for effective detection. The findings,
depicted in Figure 3, reveal that instances where an object in the
image contradicts a specific word or phrase in the text (a), or where
the overall textual description is incongruous with the depicted
facts in the image (b), are more likely to be attended to by our model.
Specifically, in Figure 3(a), the LGCN emphasizes the object region
of beans in the image, alongside textual mentions of "beans" and
"fresh". In Figure 3(b), despite the absence of specific objects in the
image relevant to the textual content, the GDN directs attention
towards the area associated with the injection wound, with higher
attention scores assigned to "flu" and "fun" in the text.

5 Conclusion
In this paper, we propose a model named GCN-DN, which combines
Graph Convolutional Network and Dynamic Network, to capture
both inter- and intra-modal incongruities in image and text for
multi-modal sarcasm detection tasks. The GCN-DN model, inspired
by human cognitive processes, generates augmented text to thor-
oughly mine information from the textual modality. The integration
of graph convolutional network and dynamic network fully utilizes
both object-level and global-level image features. Moreover, the
design of the dynamic network allows for the capture of sarcasm
cues based on varying image and text inputs. Experimental results
on public datasets demonstrate the effectiveness of our approach,
and ablation studies confirm the superiority and significance of
combining graph convolutional network and dynamic network. The
equivalence of our proposed method for generating augmented text
simulating human thought processes to human cognitive processes
requires broader validation and evidence. In the future, we will
explore more techniques to integrate different modalities.
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